Tubular drag conveyors: cable vs chain systems

2022-12-07 15:25:27 By : Ms. Annie Cheng

Although similar in the functionality for food processors, tubular chain and cable drag conveyors have distinct differences in components and operation. A closer look at these systems will help food manufacturers better understand which system would best support their dry food processing requirements.

Tubular drag conveyors are mechanically driven conveyors that drag material along the inside of a tube. They are designed to transfer flowable bulk materials from in-feed points to discharge points through a totally enclosed conduit. Using either a cable or a chain, with close-running discs spaced along its length, the ends of the tubular drag conveyor are connected to each other to form an endless loop, which is pulled by a motor-driven sprocket within an enclosed tube.

Changes in direction are facilitated by bends in the tubing or by corner housings for tighter turns. Discharge of the product is achieved through outlet boxes.

Tubular drag conveyors are flexible and designed for versatility in gentle material handling operations. Modular components allow changes in conveyor routing, length and the number and position of inlets and outlets. They can move material vertically, horizontally, around corners and at an angle at conveying speeds of up to approximately 42.4 m3/h.

These tubular conveyors have been used successfully throughout a range of industries for over 50 years. One of these industries is in the processing of food products, gently conveying friable materials including powders, pellets, flakes, granules, chunks, shavings, prills, parts, crumbles, fluff, regrind and dust. In the process, blended materials containing particles of disparate sizes, shapes and bulk densities are transferred without separation.

Food safety and product reliability, escalating concerns in the food processing sector with more stringent track and trace requirements, have increased the need for product safety procedures to eliminate food contamination and cross-contamination of allergens. Tubular drag conveyors, with their completely enclosed tubing, have proven to be one of the most reliable methods for conveying dry food products safely. Consequently, the demand for these systems in the conveying of food products has continued to escalate.

Tubular drag chain conveyors gently move food products through a sealed tube with a drag chain pulled through it on a loop. Solid circular discs (flights), which push the food through the tube, are attached to the chain. This system can move up to 36,287 kg/h throughput of dry food product.

Since the chain is the defining characteristic of this type of conveyor, a little history might be in order. Tubular chain conveyors were first introduced in the mid-1940s and have since grown in usage in manufacturing. The use of steel bushings in chain, however, was first introduced in the late 1880s as a revolutionary development because the bushing acted as a bearing, giving chain, at the time, greater wear resistance. Chain with bushings subsequently showed up in bicycles, automobiles and airplanes. Bushings are still used today in some tubular drag chain conveyor systems. But even before the advent of steel bushings, as early as the 16th century, Leonardo da Vinci made sketches of what appears to be the first steel chain. Problems in the manufacturing and processing of steel prevented chain growth until the 19th century, when new technologies made steel chain a reality.

Two types of chain can be used in tubular chain conveyors, link chain or roller chain. Link chain can act as a universal joint during movement of the product in the tube, which enables a single conveyor to achieve directional changes in multiple planes. Roller chain, consisting of interconnected plates, held in place with pins and bushings, is capable of one-dimensional movement. Both chains are typically manufactured from type 316 stainless steel, rated for acid and corrosion resistance, but carbon steel is also an option.

Because chains exhibit friction at points of direct contact, most noticeably at system start-up, and particularly in applications of food processing where lubricants are not being used, wear can occur at these contact points throughout the length of the chain.

As with all tubular drag conveyors, the chain-drive components need to be regularly adjusted to keep the system in registration, and minimise the wear and tear of the conveying discs, chain and tube. A tension turnaround unit is used to maintain the proper chain tension.

Similar to tubular drag chain conveyors, tubular cable conveyors gently move food products through a sealed tube, but instead using a coated, flexible stainless steel drag cable pulled through on a loop. Solid circular discs (flights) are attached to the cable, which push the food through the tube. Tubular drag cable conveyors can transport up to 36,200 kg of product per hour, at low speed — similar to chain conveyors — and with product degradation practically eliminated.

The cable used in most tubular drag conveyors is WSC (wire strand core), also known as aircraft cable because it is used in control functions for aircraft. Under normal conditions, these high-tensile aircraft cables will not break. The core is type 316 stainless steel. Surrounding it are stainless steel stranded ropes, an assembly of several strands of steel laid helically in one or more layers around the core. The very high strength of the rope wires enables these cables to support large tensile forces with relatively small diameters.

Historically, wire rope (cable) evolved from wrought iron chains, which had a record of mechanical failure. While flaws in contemporary chain links can lead to catastrophic failure, flaws in the wires making up a steel cable are less critical, as the other wires easily take up the load. While friction between the individual wires and strands causes wear over the life of the cable, it also helps to compensate for minor failures in the short run.

Wire cables were first used starting with mining hoist applications in the 1830s, and not too long after formed the basis for success in suspension bridges in America, such as the support structure for the Brooklyn Bridge in 1870. Cables have since been used for virtually all suspension bridges built in the last 150 years. Elevators, aerial tramways, deep mining shafts and aircraft control systems, all critical applications, use cable. The reliability of cable, and especially WSC cable, has proven to have the required tensile strength and durability needed for any application, including transporting food products in tubular drag cable conveyors.

The tubular cable conveyor operates on low horsepower, utilising energy-efficient variable-speed motors of 1–5 HP each, effectively consuming minimal power compared to other conveyor systems used in food processing. The system’s production flow can be adjusted to variable speeds to modify throughput. A drive unit provides power to move the cable-and-disc assembly through the conveying tubes. The system components are connected with compression couplers and gaskets, making the system totally enclosed and dust-free.

Similar to tubular drag chain conveyors, maintaining the required cable tension by the installer and operator is necessary to proper function of the system, and to eliminate the remote possibility for cable strand breaks at cable connection points. A tension turnaround unit maintains the proper cable tension while the system is in operation. The entire cable is totally nylon sealed, ensuring that no food directly comes in contact with the stainless steel cable, and ensuring that no potential strand breaks come in contact with the food products being conveyed.

This conveyor system has the unique flexibility to integrate with any food production processes: from receipt of raw materials, to weight and fill, grinding and packaging. They are critically applicable where food components can become damaged, where contamination would be prevalent, or where dust accumulation can be excessive, such as in filling and packaging.

Product contamination is a key issue influencing conveying in food production. In every step of the process, from receipt of raw materials through packaging, keeping foreign matter from entering the process stream, maintaining system sanitation and keeping the system free from unwanted of allergens are critical objectives.

The importance of product contamination is magnified with increasingly stringent governmental and industry product track and trace mandates, and consumer demands for maintaining product integrity and safety.

Line changeovers have become a focal issue in food production, relative to both cleanliness and speed of changeovers. Companies are increasingly running different product lines within a single shift or day. Despite these changeovers, processing plants are expected to maintain stringent levels of sanitary and allergen-free operation.

Every minute spent disassembling a conveyor system for cleaning consumes valuable production time. Yet, if not cleaned properly, that batch of food product being conveyed that needs to be discarded because of contamination is lost profit. Or worse, consumers could be negatively impacted, resulting in potential injury, costly recalls and impacted brand reputation. To resolve these issues, food processors are charged with administering changeovers as quickly as possible while maintaining 100% system cleanliness.

Tubular drag conveyors, both chain and cable systems, transport dry bulk food products gently to discharge points in totally enclosed, dust-free conveying tubes. This prevents foreign substances from contaminating the product stream and keeps dust from the transported product from escaping into the production environment, reducing both the incidence of health hazards and the potential for dust explosions.

Tubular chain conveyor systems are designed to meet sanitation specifications as mandated by the FDA. At the core of these systems is the polished stainless steel conveyor link chain or roller chain, which is rated acid and corrosion resistant.

Because the entire chain is directly immersed within the food being conveyed, as is with tubular cable conveyors, cleaning the chain — quite in addition to the tubing itself — requires more care than what is needed for the cable in a tubular cable conveyor. This is particularly true with roller chain, where food particles can pack spaces between plates, pins and bushings, and where water can remain trapped after cleaning, resulting in potential product contamination.

Notwithstanding, cleaning mechanisms are available that minimise or eliminate the build-up of food particles from the chain, conveying tubes and associated equipment. These mechanisms include brush boxes, chain knockers and wet clean-in-place (CIP) systems.

Dry cleaning mechanisms available for tubular chain conveyors:

Wet cleaning CIP (self-cleaning) mechanism available for tubular chain conveyors consists of a 3-step internal tube cleaning process:

Tubular cable conveyors for food-grade applications are better designed, compared to tubular chain conveyors, to eliminate places for fines to accumulate. Solid discs are used, with no screws or bolts, and attached directly to the cable. Stainless steel connectors are used throughout the system. And equipment is removable for easy cleaning.

One of the key advantages of tubular cable conveyors over tubular chain conveyors is the significantly reduced possibility of trapping food residue on the cable, compared to a chain. As with both link chain and roller chain, the cable is fully immersed within the food being transported through the tube. But the chain has significantly more surface area exposed to the food. The cable has only approximately 20% of the surface area exposed to food, compared to the surface area of the chain.

Further, the cable is completely uniform and smooth throughout its entire route within the tube. The chain itself, however, has many 90-degree turns and connections link to link, where food residue can more easily collect. The most hygienic food processing equipment designs minimise or eliminate 90-degree angles where food contact is present.

Supporting this is the stainless steel cable used in tubular cable conveyors, which is totally nylon sealed, ensuring that no debris accumulates within the strands of the cable.

Compared to tubular chain conveyors, tubular drag cable conveyor systems offer more options for dry and wet tube conveyor cleaning. These include brush boxes, urethane wipers, air knives, inline sponges, inline bristle brushes, and multi-step CIP (self-cleaning) wet cleaning.

Dry cleaning mechanisms available for tubular cable conveyors:

Wet cleaning CIP (self-cleaning) mechanism available for tubular cable conveyors consists of a 3-step internal tube cleaning process:

When it comes to assessing what a tubular conveying system would be best suited for a specific food processing application, the following aspects should be considered:

Tubular drag conveyor systems that were installed in facilities 10 to 15 years ago may have been adequate at that time, but now better technology in conveying system design, controls and automation has brought into place a whole new generation of conveyors for use in food processing, with resultant improved efficiency.

Safer, cleaner processes that reduce waste and deliver cost, labour and energy savings are increasingly being factored into equipment selection. Such tubular drag conveying systems are having a critical impact on food processors’ operational costs and plant ROI.

Cable has no moving components like links, plates, pins and bushings integral to chains, that cause friction and wear — if just one component breaks, complete system shutdown occurs; alternately, excessive system stresses on cables result in localised strain breaks — loads are redistributed, maintaining cable integrity and system uptime.

Nylon-coated cable prevents direct contact of the stainless steel cable with transported food. The nylon’s smooth surface is void of crevices or sharp-angled components where food particles could be collected, such as is the case with chain links, plates, pins and bushings where food particles are packed in.

In addition to a 3-step, clean-in-place wet-cleaning process for internal tubing, cable systems provide a considerably more comprehensive set of five mechanisms for internal tube dry cleaning, compared to chain systems. These processes speed cleaning, ensure sanitation and enable faster changeovers compared to chain systems, which must contend with trapped water deposits within components subsequent to cleaning. Not the case with cable systems, which, because of their smooth, costed-cable design, have no trapped water deposits.

The two main areas of consideration when it comes to tangential design and axial design nozzles...

Researchers have developed a soft gripper that could be used to grasp soft fruits and vegetables...

Researchers have captured the brain activity as operators work with robots on a manufacturing...

How to Prepare for Your Next Food Safety Audit

Minimising Production Waste in Packaging Seal Integrity Testing

What does it take to ensure proper warehousing conditions?

Leuze DRT25C — dynamic reference diffuse sensor

The optimum plant-based taste experience

Testing food textural properties with Lloyd TA1

MET0003C - X12 Global Teaser

Trust your gut — advances in microbiome DNA analysis

The biosensor chip at the end of the rainbow

With funding dwindling, how can biotech companies maintain momentum?

Black hole observed ripping apart a star

Genetic factors contribute to risk of severe COVID-19

2022 WHS Excellence Showcase Champions revealed

Company fined $300K after worker crushed by garbage truck

Why action must be taken on truck driver health

Resources sector launches workplace sexual harassment campaign

Equipment operators urged to consider La Niña hazards

Data highlights importance of GPs, continuity of care

$34m raised for needle-free vaccine patch

Australia 'behind' on cancer liquid biopsy technology

Faulty batches of bipolar, epilepsy drug distributed in Aust: study

The role of neurofeedback in treating trauma

Westwick-Farrow Media Locked Bag 2226 North Ryde BC NSW 1670 ABN: 22 152 305 336 www.wfmedia.com.au Email Us

Our food industry media channels - What’s New in Food Technology & Manufacturing magazine and the Food Processing website - provide busy food manufacturing, packaging and design professionals with an easy-to-use, readily available source of information that is crucial to gaining valuable industry insight. Members have access to thousands of informative items across a range of media channels.

Membership is FREE to qualified industry professionals across Australia.